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Abstract  
The periodic potential and its symmetry determine the 

energy band structure and as a consequence the effective 
masses of semiconductors. Superlattices do have a lower 
symmetry than the materials they are made of and they do 
have an additional long-range periodicity. Therefore the 
effective masses of superlattices should be a propertie of the 
superlattices itself and different of the one of its constituents. 
An increase of the Seebeck coefficient in the cross-plane 
direction, i.e. in the direction of growth of the superlattice, 
due to the filtering of electrons having energy below the 
Fermi level is expectable and an increase of the figure of 
merit may be attainable. In this article, the effective mass of 
an electron in a one dimensional rectangular periodic 
potential is derived in the tight-binding limit. The effective 
mass is found to be related to the energy band width 
calculated with the Kronig-Penney Model and the 
periodicity of the superlattice. The dependence of the figure 
of merit Z on the effective masse for a single conduction 
band and one type of charge carrier is discussed for bulk 
materials. The discussion is also done with the figure of 
merit derived by Dresselhaus for electrons in stacked 
quantum wells. Finally, the concept of minimal thermal 
conductivity of solid is reviewed and a method is proposed 
to compute the thermal conductivity of superlattices. The 
method of calculation proposed for the electronic and 
thermal properties suggest the possibility to derive a figure 
of merit which is much more related to the structure of the 
superlattices (periodicity, height of the energy barrier, 
interatomic distance and scattering mechanisms) and less 
related to the bulk material properties of the constituents. 

Introduction 
Fourteen years ago, Hicks and Dresselhaus did trigger a 

renewal of activity in the thermoelectric research area by 
proposing, in a very understandable way that quantum wells 
could have much higher figure of merit than the bulk 
materials [1]. The reason for this predicted increase was the 
higher dissymmetry in the electronic density of state at the 
optimal Fermi level achievable with low dimensional 
structures. This higher dissymmetry induces a more efficient 
filtering of the cold electron below the Fermi level. Just few 
years later, Venkatasubramanian did report a figure of merit 
of 2.4 in the cross-plane direction on Bi2Te3/Sb2Te3 
superlattices [2], supporting the prediction made. 
Nevertheless, beside the surprisingly very good mobility [3], 
the improvement was much more the result of a reduction of 
the thermal conductivity [4], for which the value was 
slightly below the minimum thermal conductivity of solid 
calculated with the model of Cahill [5]. 

Nevertheless, the analytical model of Hicks and 
Dresselhaus is only valid for the calculation of the transport 
properties in the in-plane direction of a superlattice, i.e. in 

directions that are parallel with the plane of the quantum-
well. This is because the charge carriers are restricted to 
move in this plane. Furthermore, the effective *m  mass that 
enters in the calculation of the density of state1 per unit of 
volume of the 2D electron gas )(Eg  is taken equal to that of 
the bulk material which is not valid since the unit cells of the 
superlattice is not the same that the one of the well [6]: 

∑ −Θ=
N

NEE
d

mEg )()( 2

*

hπ
  (Eq. 1) 

where )(xΘ  is the unit step function equal to 1 at x=1 
and 0 at x<0, NE  the subband edge energies and d  the 
thickness of the well (the thickness of the barrier is assumed 
to be zero but the height is infinite). 

The specificity in the scattering mechanisms of electrons 
and holes in superlattices are likely to play an important role 
in the material of Ventakabrasubramanian but are not taken 
into account in the model of Hicks and Dresselhaus, the 
relaxation time being taken equal to a constant. 

Therefore the model is insufficient to explain the 
experimental results. The correct method for calculating the 
density of states and the effective mass in the cross-plane 
direction is to use ab-initio calculation, i.e. to define a unit 
cells for the superlattice and to use algorithm like the APW, 
KKR or DFR methods [7-8]. Such methods have been used 
to explain the relatively high mobility of the superlattice of 
Ventakabramanian. It has been calculated that the effective 
mass was similar in the in-plane and cross-plane direction 
[9] and that the effective mass could be tuned (reduced) to 
enhance the mobility [10]. The figure of merit increases 
indeed with the ratio of the mobility ( µ ) to the lattice 
thermal conductivity ( phλ ) through the so-called quality 

factor [12, 13]. However, how the figure of merit change 
with a variation of the effective mass is not trivial. The 
mobility is of course an inverse function of the effective 
mass, but the density of states increase linearly with the 
effective mass in a 2D electron gas and even more quickly 
for a 3D electron gas (~ 2/3*m ). In fact, if the calculation of 
quality factor is carried out with the same hypotheses than 
Hicks and Dresselhaus, the quality factor (one band model, 
parabolic approximation) for a stacked 2D electron gas is 
[13]: 
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  (Eq. 2) 

The quality factor for a bulk material with the same 
hypotheses is: 

                                                           
1 Assuming that the effective mass in the well is the same that in the bulk 
counterpart bulk material, the density of states can be higher than in the 
bulk. 
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where the relaxation time for the charge carrier has been 
written as a simple power law: 

rεττ 0=  (Eq. 4) 

r  is called the scattering parameter. 

Surprisingly, the quality factor for a stacked 2D electron 
gas is not strongly a function of the effective mass but a 
function of the scattering parameter whereas the quality 
factor of a bulk material is strongly a function of the 
effective mass but not of the scattering mechanism (the 
figure of merit is a function of the scattering mechanism). 
The quality factor of a real superlattice may be something 
between the one given by Eq.2 and Eq. 3 since the electrons 
may tunnel, or the interfaces of the superlattice may be 
imperfect. 

Joffe found by optimizing Phλσα 2 (σ =electrical 
conductivity, α = the Seebeck coefficient) that a low 
effective mass was better [11, p 173]. But by doing so, he 
did neglect the fact that low effective mass does also 
increase the electronic contribution of the charge carriers to 
the thermal conductivity. Mahan at the contrary did point out 
the fact that there is the combination 2/3*mµ  in the quality 
factor of bulk materials, and that high effective mass may be 
in fact better [10, p 106].  

The bias in favor of low effective masses is may be due 
to the low effective mass found in the material systems 
(Bi,Sb)2(Te,Se)3, which does follows the so called TkB10  
rule (T is the temperature where the figure of merit is 
maximal). The TkB10  rule states that since phλ increase with 

band gap, i.e. with the decrease of the atomic weight, one 
wants materials with small gaps to keep phλ  small. 

Nevertheless the gap must not to be too small because we 
want just one kind of charge carriers. As a consequence, the 
optimal band gap GE  of a thermoelectric materials is usually 
~ TkB10 . Since the effective mass decreases when the band 
gap is reduced [15, page 45], 
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the small effective mass in (Bi,Sb)2(Te,Se)3 arises from 
the need for low thermal conductivity in thermoelectric 
materials and not a need for high mobility. After this 
introduction it is evident that the effective mass has to be 
maximized to increase the figure of merit when the 
electronic contribution to the thermal conductivity is not 
negligible. It is also concluded that an increase of the 
effective mass will produce a larger increase of the figure of 
merit when the lattice thermal conductivity is low. The 
objectives of this article was therefore to find a way to 
increase the effective mass and to figure out if the concept of 
minimal conductivity of solid could be apply to the 
superlattices. 

In the next section, we will calculate the effective mass 
of an electron in a one dimensional rectangular periodic 
potential in the tight-binding limit. Even if the model is only 
valid for narrow energy band separated by wide band gap 
(certainly not the case of most thermoelectric materials), we 
would like to demonstrate that the effective masses can be 
tuned by varying the superlattice structure. In the section 
about the lower limit of the thermal conductivity of 
superlattice, we show that the Cahill’s formula describing 
the minimum thermal conductivity of solids can be derived 
using the usual kinetic equation, just by taking a relaxation 
time for the phonons equal to ωπ . A simple explanation is 
given for this unusual relaxation time. Finally, some result 
of lattice dynamic studies are used to figure out if it is 
possible to get an even lower thermal conductivity with a 
superlattice than the one predicted by Cahill for bulk 
materials.  

Effective mass in a periodic potential 
Using the one dimensional tight-binding formula i.e. 

when the electrons are strongly bonded to the individual 
atoms or here when the electrons are almost trapped in a 
periodic potential (Figure 1), the energy dispersion can be 
approximated by [15, page 37]: 
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which is valid when 
1) The width of the energy bands n∆ is narrow and separated 
by wide gaps, 
2)The energy E of the electrons are lower than the height of 
the energy barrier 0V . 

c
nE  denotes the center of the energy band, and d the period 

of the superlattice. 

The band width can be approximated by [15, page 37] 

[ ] ))(exp(
(')(
)(8 0 bE
EFE

EV c
nc

n
n
c

c
n

n κ
κκ

−−=∆  (Eq. 6) 

where 'F  denotes the first derivative with respect to zκ  of 
the right-hand side of the following equation: 
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Where 

zkz mEk 222 =h  and )(2 0
22
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Using Eq. 5, the energy near a minimum or maximum can be 
written as: 
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Rearranging the terms and combining the factors in front of 
2k  results in: 
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Where 2)1(0
n

nc
nn EE ∆−+=  denotes the top (n even) or 

bottom (n odd) of the respective bands. 



By identification between Eq.8 and Eq.9, the effective mass 
is found to be given by:  

2

2
* 2

d
m

n
n ∆

= h  (Eq. 10) 

It can bee seen that the effective mass increases strongly 
when the superlattice period d  decreases. Since n∆  
decreases exponentially with the barrier width b , it is also 
conclude that the effective mass will increase when the 
barrier width is decreased. 

 
Figure 1: The rectangular periodic potential in the Kronig-Penney model. 

Lower limit to the thermal conductivity of supelattices 

Minimum in thermal conductivity of solid (Cahill’s model) 
We are demonstrating now that in the Cahill’s model, a 

vibration mode of frequency f  is assumed to exchange 
energy at a frequency f2 (like a clapper in a bell). Therefore 
it will be relaxed after a time )2(1 f=τ . The angular 
frequency ω  being equal to fπ2 , the relaxation time will be: 

ω
πτ =  (Eq. 11) 

Under the Debye approximation, it is assumed that 
dispersion relation is linear, so that: 

vk
πτ =  (Eq. 12) 

If we inject the heat capacity at constant volume [16] 
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into the algebraic expression of the lattice thermal 
conductivity [16] 
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we obtain: 
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The integration is made from 0 to Dk , since we are working 
with the Debye approximation. Dk  defines the Debye 
temperature which is given by: 
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Where n  is the number of atoms per unit of volume and v  
the sound velocity. 
After the change of variable Tkvkx Bh=  in the Eq. 16, the 
equation becomes: 
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This is the thermal conductivity for one acoustic mode either 
longitudinal or transverse. When the summation is done with 
two transversse and one longitudinal mode, the Eq. 17 is the 
same than the one derived by Cahill. 

Minimum in the thermal conductivity of superlattice 
It is well know that layered structures are efficient noise 

protection walls. The combination of different layers with 
different acoustic impedances and thicknesses reflects the 
sound waves so that the propagation of energy is impeded. 
In material science, the most computational time efficient 
method to get an insight into how well the energy propagate 
oneself in a superlattice is the calculation of the lattice 
dynamics [17]. The phonon density of level )(ωg  and the 
dispersion relation )(kω are calculable but no information 
about the relaxation time can be obtained with this method. 
Tamura and al found that the frequency dependent density of 
states weighted by the square of the group velocity in the 
cross-plane direction of a Si/Ge superlattice was strongly 
reduced [18]. With the same method, Yang and al. found 
that the phonon density of states in superlattices takes 
approximately the average values of the corresponding bulk 
materials. They confirm that the thermal energy propagation 
was strongly reduced in the cross-plane direction of the 
superlattice only [19]. An increase of the thermal 
conductivity was calculated when the layer thickness was 
decreased because of the tunneling of phonons. 
Nevertheless, the choice of the density of states weighted by 
the square of the group velocity as thermal energy 
propagation factor is open to criticism since it should be also 
weighted by the energy carried by the phonon, i.e. the heat 
capacity. Tamura et al did also calculate the ratio of thermal 
conductivity to the relaxation time, so that the heat capacity 
was taken into account. Similar results were obtained i.e the 
ratio of the thermal conductivity to the relaxation time was 
lower in superlatice than in bulk materials. Nevertheless 
when the ratio of the thermal conductivity to the relaxation 
time is calculated for the bulk material and the superlattice 
and when the results are compared, it is implicitly assumed 
that the relaxation time is independent of the angular 
frequency and that the relaxation time is the same for the 
bulk material and the superlattice. Therefore the method can 
not be used to calculate a lower limit to the thermal 
conductivity of the superlattice. The utilization of an angular 
frequency dependent relaxation time (like in the Cahill’s 
model) along with the lattice dynamic calculations of the 
dispersion relations may be use in future to calculate the 
thermal conductivity of superlattices. Nevertheless, it is an 
open and interesting question whether the relaxation time 
used by Cahill and the dispersion relations calculated by 
lattice dynamics can be used in the same time. If it was the 
case, the thermal conductivity predicted for superlattices 
would be even lower than the minimal thermal conductivity 
of solid calculated by Cahill. 



The parameter entering in the calculation of the 
relaxation times [15, 20] of the charge carriers (elastic 
constants, acoustic and optic deformation potentials …) and 
of the phonons (Grüneisen parameters, scattering cross-
section,…) may be obtained with usual available 
computational tools in material science like molecular 
dynamic, provided that a suitable interatomic potential for a 
given material system is available [21]. 

Conclusions 
To summarized, based on the Kronig-Penney Model and 

on results recently available in the literature, the effective 
mass can be tailored with a proper choice of the layer 
thicknesses of superlattices. A literature review about basic 
theories related to thermoelectric materials lead us to think 
that higher effective masses are better to get higher figure of 
merit, even if the mobility will be lowered. It is underlined 
that the bias in favor of low effective masses is likely to be 
due to the low effective masses found in the material system 
(Bi,Sb)2(Te,Se)3, which is a negative consequence of the fact 
that materials with heavy atoms does also have low thermal 
conductivity. The quality factors for bulk materials and a 
stacked 2D electron gas have been calculated with an energy 
dependent relaxation time of the charge carrier. The 
calculation suggests that the effect of the scattering 
mechanism on the figure of merit will be much more 
important in superlattices than in bulk materials. It is 
predicted that highly energy dependant scattering 
mechanisms are favorable in superlattice. Using the Kronig-
Pennel Model of electrons in a periodic potential, we found 
that the effective mass in a superlattice may increase when 
the period is made shorter and the width of the barrier is 
decreased. 

The axiom stating that the thermal conductivity is the 
lowest when all of the thermal excitations are scattered at a 
distance of one-half the wavelength, has be found 
undoubtedly equivalent with a relation time equal to ωπ .   
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