Structural and Thermoelectric Properties of AgSbSe2 and AgSbTe2

K. Wojciechowski¹, J. Tobola², M. Schmidt¹, R. Zybala¹ ¹ Faculty of Materials Science and Ceramics ²Faculty of Physics and Applied Computer Science AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow, Poland e-mail : <u>gcwojcie@cyf-kr.edu.pl</u>, phone: (+48)12-617-34-42

Abstract

Undoped AgSbSe₂ and AgSbTe₂ materials were synthesized by direct fusion technique. The structural properties were investigated by X-ray diffraction and SEM microscopy. The electrical conductivity, thermal conductivity and Seebeck coefficient have been measured as a function of temperature in the range from 300 to 600 K.

To enlighten electron transport behaviors observed in $AgSbSe_2$ and $AgSbTe_2$ compounds, electronic structure calculations have been performed by the Korringa-Kohn-Rostoker method with coherent potential approximation (KKR-CPA). The calculated density of states in fully disordered cases shows apparent tendencies to opening the energy gap near the Fermi level for the stoichiometric $Ag_{0.5}$ Sb_{0.5}X compositions, which well agrees with the semimetallic properties of the analyzed samples.

Introduction

The ternary chalcogenides AgSbSe₂ and AgSbTe₂ belongs to family of semiconductors with disordered NaCl cubic structure (s.g. Fm3m), in which silver and antimony occupy metal sublattice[1]. Both compounds are very interesting due to their thermoelectric properties (see

Table 1), especially very low thermal conductivity $\lambda < 1$ Wm⁻¹K⁻¹, which is a consequence of their disordered structure.

	0	0
Parameter	AgSbTe ₂	AgSbSe ₂
Space group	Fm3m	Fm3m
Cell size [Å]	6.078 [1]	5.786 [1]
Density [g·cm ⁻³]	7.12 [1]	6.60 [1]
Band gap [eV]	0.71 ^b [5] 1.65 ^c [5]	0.091 ^a [8] 0.34 ^b [7] 1.03 ^c [6]
Thermal conductivity [W·m ⁻¹ ·K ⁻¹]	0.64 [3]	0.82
Electrical conductivity [S·cm ⁻¹]	130-150 [3]	154 [9]
Seebeck coeff. [µV·K ⁻¹]	165-240 [3]	
Melting point [°C]	555 [2]	610 [2]

Table 1 Selected physical properties of AgSbSe₂ and AgSbTe₂.

^a electrical measurements; ^b direct gap - optical measurements;

^c indirect gap - optical measurements

Cubic AgSbTe₂ is known as a good p-type thermoelectric material, but due to its thermodynamical instability below 360°C it slowly decomposes on secondary phases: α Ag₂Te and Sb₂Te₃ [3], and limits its practical application. It is expected that alloying of AgSbTe₂ with other cubic compounds, such us: GeTe (TAGS), PbTe and SnTe, can allow stabilizing the NaCl structure.

However these alloys are also known to be complicated by their inhomogeneity, despite reports of complete solid solutions in phase diagram determinations [4]. Exceptionally high thermoelectric figure of merit ZT=2, has been reported for $(Ag_{1-y}SbTe_2)_{0.05}$ (PbTe)_{0.95}, which may involve the nanoscale microstructure. Although, conflicting reports on the same materials claim only ZT of 1 or less. Chen et al. [4] shown that these materials are multiphase on the scale of millimeters despite appearing homogeneous by X-ray diffraction and routine electron microscopy. Using a scanning Seebeck microprobe, authors found significant variation of Seebeck coefficient including both n-type and ptype behavior in the same sample. It can not be excluded that complicated behavior of the alloys can be result of the complex nature of their parent compounds.

Despite that $AgSbSe_2$ and $AgSbTe_2$ based materials are widely investigated, the basic information about properties of pure compounds, e.g the nature of the disorder, or electronic structure are still not quite clear.

Experimental details

The starting materials were prepared by direct fusion of stoichiometric amounts of their consistuent elements (Ag, Sb, Se, Te) of purity 99.99% in sealed, evacuated silica tubes covered inside with thin layer of pyrolytical carbon. Tubes were heated in temperature controlled, cradled furnace at 700°C for 1 h, with continuous swinging to complete mixing and reaction. Tubes were gradually cooled to room temperature to obtain polycrystalline ingots. The materials were ground and hot-pressed in graphite dies (argon atmosphere, t = 20 min, p = 30 MPa, at T = 410 °C) and slowly cooled down with rate of 1 °C/min to the room temperature in order to avoid fracturing. Because AgSbTe₂ can undergo decomposition below 360°C some of AgSbTe₂ samples were heated in evacuated quartz ampoules to 450°C and rapidly cooled down by quenching in water, in order to obtain single-phased materials. The samples of 10 mm in diameter and about 20 mm in height, were cut with a diamond saw and polished.

The prepared materials were characterized by X-ray diffractometry (X'Peret Philips system, with filtered CuK_{α} radiation) and scanning electron microscopy (JEOL JSM-840 with an electron-probe microanalysis apparatus (EPMA). The lattice parameters were calculated from the experimental X-ray patterns using FullProf refinement program implementing Rietveld method. The electrical and thermal transport properties were measured over the temperature range from 300 to 600K. The electrical conductivity was determined by four-probe AC technique. Seebeck coefficient and thermal conductivity The measurements were conducted in radiation-shielded vacuum probe by forcing variable heat flux across the sample and measuring corresponding linear variations of temperature differences and thermoelectric voltage in steady-state conditions. Heat flux, passing by the cold side of the sample, was measured by previously calibrated heat-flux sensor. The results were used for precise calculations of increased heat losses due to very low thermal conductivity of measured

samples. The Hall coefficient R_H was measured using low frequency (7 Hz) AC sample current of 50 to100 mA/mm² in a constant magnetic field of 0.705 T at the room temperature. Carrier concentrations were evaluated from the Hall coefficient R_H , assuming a Hall scattering factor equal to 1.0.

Structural analysis

SEM observations with simultaneous EPMA analysis of the samples revealed that the resulting materials had an uniform microstructure and chemical composition. The AgSbTe₂ samples contained well-formed grains with sizes ranging from 5 to 50 µm. However, all AgSbTe₂ samples had visible Widmanstätten-like texture. It has been suggested in [10] that the pattern is associated with the presence of Sb₂Te₃ as a Widmanstätten precipitate along {111} planes in the AgSbTe₂. Conversely, AgSbSe₂ samples had a glass-like texture without visible grain borders. XRD analysis of AgSbSe₂ and fast cooled AgSbTe₂ samples shows that obtained materials were single-phased. In case of slowly cooled samples of AgSbTe2 small amount (<10%) of other phases were noticed. The measured densities of all materials were found to be at least 98% of their crystallographic densities.

The Rietveld refinement method was used for refining structure parameters for the model of the disordered NaCl structure (Fm3m) and various models of ordered ABX₂ type structures. There were considered the most common superstructures of NaCl: e.g. α -NaFeO₂ (*R*-3*m*), LiTbS₂ (*Fd-3m*) and γ -LiFeO₂ (*I*4₁/amd). Analysis of "goodness of fit" statistical parameters for the refinement results, such as: χ^2 , R_{wp} , and Durbin-Watson statistics, show that all the models describe experimental data practically with the same precision and therefore they are very similar within these criteria. Moreover, in all calculated diffraction patterns, intensities of characteristic superstructure reflections are lower than the experimental background signal. These results are a consequence of very similar X-ray scattering factors of Ag and Sb for CuK_{α} radiation (f_{Ag} =47.2+4.3i and f_{Sb} =50.9+5.7i respectively). Therefore, it seems that the nature of ordering in the AgSbSe2 and AgSbTe2 structure can not be easily investigated by classical X-ray diffraction techniques. However, preliminary structural calculations show that such analysis would be possible e.g. by using neutron radiation (CW or TOF method).

Transport properties

Studies of temperature dependences of electrical conductivity revealed that $AgSbSe_2$ and $AgSbTe_2$ exhibit semimetallic/semiconducting behavior. The activation energies E_a for both compounds, determined using an Arrhenius law, are about 0.03 eV and remain close to another result of 0.09 eV obtained from electrical investigations (see

Table 1). On the other hand, these data are much lower than values of direct band gap energy E_g^d (0.3 to 0.71 eV)

measured by optical method for intrinsic absorption region. It may suggest that results of electrical investigations correspond rather to activation energy of extrinsic charge carriers, but another explanation of discrepancies may lay in significant differences in microstructure of samples (thin layer vs. bulk polycrystalline material). The magnitude of the Seebeck coefficient of $AgSbTe_2$ at the room temperature is consistent with semimetallic behavior of this sample ($\alpha = 68 \ \mu VK^{-1}$). The Seebeck coefficient for $AgSbSe_2$ is larger (320 μVK^{-1}) what can be a symptom of more semiconducting character of this compound.

Fig. 1 Temperature dependence of electrical conductivity of AgSbSe₂ and AgSbTe₂.

Both materials exhibit *p*-type of conductivity and relatively large Hall concentration of carriers of $1 \cdot 10^{19}$ cm⁻³ and $5 \cdot 10^{19}$ cm⁻³ for AgSbSe₂ and AgSbTe₂ respectively. The Seebeck coefficient and Hall carrier concentration data were used to estimation of effective mass of carriers *m*^{*}, assuming a single parabolic band model with acoustic phonon scattering as a predominant carrier scattering mechanism.

Fig. 2 Temperature dependence of the Seebeck coefficient values of $AgSbSe_2$ and $AgSbTe_2$.

Calculated effective masses of carriers are significantly different: $m^* = 2.7$ for AgSbTe₂ and 0.7 for AgSbSe₂, despite of comparable mobilities (40÷50 cm²s⁻¹V⁻¹). Dissimilar effective masses m^* can indicated on differences in band structure of both compounds near the Fermi energy.

Table 2. Thermoelectric properties of undoped ${\bf AgSbTe}_2$ and ${\bf AgSbSe}_2$ samples at room temperature.

Parameter	AgSbTe ₂	AgSbSe ₂
Cell size a [Å]	6.0816	5.7883
Band gap E_g [meV]	26	30
Electrical conductivity σ [S·cm ⁻¹]	332	79
Seebeck coeff. $[\mu V \cdot K^{-1}]$	68	320
Thermal conductivity $\lambda [W \cdot m^{-1} \cdot K^{-1}]$	1.15	0.81
Elec. cont. of therm. condct. $\lambda_{el} [W \cdot m^{-1} K^{-1}]$	0.2	0.04
Type of majority carriers	р	р
Hall carrier concentration n [cm ⁻³]	$5.0 \cdot 10^{19}$	$1.0 \cdot 10^{19}$
Hall mobility μ [cm ² s ⁻¹ V ⁻¹]	41	49.2
Carrier effective mass m*/m ₀	2.7	0.7

The samples of AgSbSe₂ and AgSbTe₂ demonstrate very low thermal conductivity (see Table 2). The measured value for AgSbSe₂ at room temperature is in excellent agreement with literature data (Table 1). Thermal conductivity of AgSbTe₂ is higher than earlier reported value ($0.6W \cdot m^{-1}K^{-1}$). The discrepancy can be result of different amount of secondary phase inclusions and larger electrical conductivity. Calculated, on basis of Wiedemann-Franz-Lorenz law, electronic contribution of thermal conductivity λ_{el} equals about 18% of the total thermal conductivity λ .

Electronic structure

Electronic structure computations on ordered and disordered AgSbSe₂ and AgSbTe₂ alloys as well as their hypothetical NaCl-type parent compounds have been performed using KKR method [15,16]. The coherent potential approximation (CPA) has also been incorporated to account for chemically disordered materials. The crystal potential of muffin-tin form has been constructed within the LDA framework, using von Barth-Hedin parametrization for the exchange-correlation part. For well-converged charge and potentials, the total, site-decomposed and *l*-decomposed density of states (DOS) were computed applying k-space tetrahedron integration. The Fermi level was determined from the generalised Lloyd formula.

Fig. 3 DOS of hypothetical NaCl-type parent compounds AgSe, AgTe, SbSe and SbTe. Black (solid), blue (dot) and red (dash) lines represent total, 'left' (Ag, Sb) and 'right' (Se, Te) DOS, respectively.

The electronic properties of fully disordered system within the NaCl-type structure, corresponding to the chemical formula $Ag_{0.5}Sb_{0.5}X$ (X= Se and Te), have been compared to results of computations for ordered crystal structures. In order to better enlighten the origin of ground state properties of AgSbSe₂ and AgSbTe₂ systems, electronic structure has been also studied in hypothetical end-point binary compounds AgX and SbX. Moreover, the electronic structure of chemically ordered binary and ternary systems was computed by the KKR as well as the FLAPW techniques. In the calculations of all selenides and tellurides we used the experimental values of lattice constants determined in AgSbSe₂ and AgSbTe₂, respectively.

Binary compounds AgX and SbX

The investigations of DOS characteristics in hypothetical AgX and SbX allow to better understand complexity of forming semimetallic properties in $AgSbX_2$. Fig. 3 shows

that all these binary compounds have metallic ground states, but with different position of the Fermi level (E_F) wih respect to the low valley (or a true energy gap) appearing on DOS.

Band structure of AgX consists of lower lying *s*-like states, coming essentially from X atom, and the block of presumably *d*-Ag and *p*-X states, enabling to accomodate 16 electrons. The semiconducting properties would be expected if all these bands are completely filled. Since AgX possess 17 valence electrons, the Fermi level E_F is placed in upper region of the valence bands. Consequently, AgX (VEC=17) can be viewed as one-hole compounds, since one electron must be added to reach the deep DOS valley. Electronic structure of SbX consists of four successive blocks of bands. The lower lying two separate and narrow s-DOS peaks arrive from X and Sb atoms. The higher lying two blocks of strongly hybridised *p*-states from X and Sb, are separated by a true gap or a deep DOS minimum seen in SbSe and SbTe, respectively. The semiconducting properties would be expected for VEC=8. Consequently, the SbX (VEC=9) systems can be viewed as a one-electron compounds due to the Fermi falling at the bottom of the conduction band. From the analysis of hypothetical binary parent compounds, we see that there is a subtle difference between selenides and tellurides due to the presence of the energy gap between valence and conduction bands in AgSe and SbSe, whereas only a deep DOS minimum in AgTe and SbTe.

Ternary ordered $AgSbX_2$

Our computations of different crystallographically ordered approximants of $AgSbX_2$ (resulting in the X-ray diffraction patterns similiar to that received for disordered NaCl-type structure, see Table 3) show that their ground state electronic properties are really close. In all considered cases, the Fermi level is found either in the deep valley (semimetallic) or in the true energy gap (semiconducting) depending on different atomic arrangements.

Fig. 4 DOS of ordered approximant of AgSbX2. Black (solid), blue (dot), red (dash), green (dot-dash) lines represent total, Ag, Sb and X contributions, respectively. Bottom – enlarged DOS near E_{f} .

Fully disordered Ag_{0.5}Sb_{0.5}X

The appearance of semimetallic (semiconducting) properties in NaCl-type disordered $AgSbX_2$ is not so evident from the analysis of binary parent compounds, since the Fermi level was expected to fall into the gap at VEC=8 or

VEC=18, but antimony possesses four electrons more than silver.

Table 3 Results of computations for the disordered structure (Fm3m) and selected possible ordered systems of AgSbSe₂.

Symbol	s.g.	E_g	Position of the Fermi level E_f
D1	Fm3m	semimetal	minimum of DOS
A1	R-3m	semimetal	valence bands
B1	Fd-3m	~0.0 eV	minimum of DOS
F1	I4 ₁ /amd	semimetal	conduction bands
G1	Pmmn	semimetal	valence bands
Hanaa	the one	t of provide	gan on DOS saams to h

Hence, the onset of pseudo-gap on DOS seems to be related to the specific hybridisation of different type of orbitals (*d*-orbitals of Ag and *p*-orbitals of Sb) in alloyed system. Indeed, the electronic structure variation of Ag₁. $_x$ Sb_xX (Fig. 5) can not be understood in terms of rigid band behaviour and a simple shift of E_F when the number valence electron number increases. In fact, the change in relative Ag/Sb content strongly modifies the population and hybridisation of *d*-type Ag and *sp*-type Sb orbitals. The critical number of valence electrons to establish the pseudo-gap appears for VEC=14.

Fig. 5 Evolution of DOS near the Fermi level in solid solutions $Ag_{1-x}Sb_xX$ (X = Se and Te).

Noteworthy, the evolution of DOS in both cases shows subtle differences, since in tellurides have slightly higher DOS value at E_F than in the values in selenides, which remains in line with electronic properties detected in binary (true energy gap in selenides against a deep valley in tellurides). Inspecting DOS characterics of disordered Ag_{0.5}Sb_{0.5}X (Fig. 4) leads to the conclusion that the variation of valence-like DOS is stronger than the corresponding one of the conduction-like DOS. This result well supports the experimental finding revealing larger absolute thermopower in p-type AgSbX₂ materials than in n-type samples.

Conclusions

Experimental studies of AgSbSe₂ and AgSbTe₂ show that both compounds are *p*-type semimetals or very narrowgap semiconductors ($E_g = 0.03 \text{ eV}$). The Seebeck coefficient of AgSbTe₂ at the room temperature ($\alpha = 68 \mu \text{VK}^{-1}$) confirms its semimetallic properties; whereas AgSbSe₂ seems to be more semiconducting ($\alpha = 320 \mu \text{VK}^{-1}$).

The electronic structure calculations well support experimental results. DOS computations in fully disordered as well as in different ordered approximants of AgSbX₂ show that in most cases their ground state properties are semimetallic due to slight overlapping of conduction and valence bands near the Fermi energy. Moreover, the larger value of Seebeck coefficient for AgSbSe₂, in comparison to AgSbTe₂, can be related to relatively stronger variation of valence-like DOS as well as lower $n(E_f)$ in the former.

Besides, we suggest that the presence of low DOS near E_f in AgSbX₂ allows easily tuning the Seebeck coefficient sign upon suitable doping/substitution. However, *n*-type AgSbX₂ compounds are expected to have smaller thermopower than the presented here *p*-type materials, as can be roughly detected on the KKR-CPA DOS.

Acknowledgments

The work was supported by The EEA Financial Mechanism & The Norwegian Financial Mechanism, (grant No PL0089-SGE-00104-E-V2-EEA, 2007-2010)

References

- Geller S. *et al*, "Ternary Semiconducting Compounds witch Sodium Chloride-Like Structure: AgSbSe₂, AgSbTe₂, AgBiS₂, AgBiSe₂". *Acta Cryst.* Vol. 12 (1959), pp. 46.
- [2]. Wernick J.H. et al, semiconducting ternary compounds", Phys. Soc. Vol. 21, 1957
- [3]. Wolfe R. et al, Anomalous Hall Effect in AgSbTe₂, J. Appl. Phys., Vol. 31, 1960, pp. 1959-1964
- [4]. Chen N. *et al*, "Macroscopic thermoelectric inhomogeneities in (AgSbTe₂)_x(PbTe)_{1-x}" *Appl. Phys. Lett.* Vol. 87, 2005, pp.171903
- [5]. Zayed H.A. *et al*, "Optical absorption behavior of AgSbTe₂ thin films" *Vacuum*. Vol. 47, No. 1, 1996, pp. 49-51
- [6]. Soliman H. S. *et al*, "Optical properties of thermally vacuum evaporated AgSbSe₂ thin films" *J. Phys.: Condens. Matter* Vol.10, 1998, pp. 847-856
- [7]. Abdelghany A. *et al*,: Electrical conductivity and thermoelectric power of AgSbSe₂ "*Mat. Chem. and Phys.* Vol. 44, 1996, pp.277-280
- [8]. Patel A. R. et al, "Growth and Crystallization of AgSbSe₂ Films". Thin Solids Films, Vol 98, 1982, pp.51-57
- [9]. Kumar R.S. *et al*, "Synthesis and high pressure studies of the semiconductor AgSbSe₂" *J Alloys and Compnd.* 285, 1999, pp.48-50
- [10]. Armstrong R. *et al*, A Structural Study of the compound AgSbTe₂ J. Appl. Phys. 31, 1960, 1954
- [11]. Bansil A. *et al*, "Electronic structure and magnetism of Fe3-xVxX (X=Si, Ga, and Al) alloys by the KKR-CPA method" Phys. Rev. B 60, 1999, pp.13396
- [12]. Wojciechowski K.T. *et al*, "Thermoelectric properties and electronic structure of CoSb3 doped with Se and Te", *J. Alloys Compd.* Vol. 361 2003, pp.19.